

The HYPERSeries 2000 is a hyperconverged, hybrid, IT infrastructure product with built-in Disaster Recovery capabilities with a workload of up to 7 VMs. The product has two components:

© Syneto™ 2017, v. 1.0

1. Primary production unit

Model	HYPERSeries 2100
	Free syneto, Free Free Free Free Free Free Free Fre
Compute options	Single Intel Xeon - Broadwell CPU: 1. E5-2620V4 [8 cores @ 2.1 GHz]
Workload ¹	1. E5-2620V4: 4 large or 7 medium or 15 small VMs
Capacity options ²	Hybrid 8 TB effective ³ (4 TB net)
Capacity expansion	Not available (expansion options are only available on HYPER 3000)
Memory ⁴	48GB (usable by VMs)
DRAM data cache⁵	12GB (high speed data read)
Read cache	Not available (dedicated SSD read cache is only available on HYPER 3000)
Write acceleration	2 x 20GB SSD (write-intensive)

Chassis	1U rack-mountable, 4 bays (hot-swap) + 2 OS disks
Network connectivity	4 x 1GbE and 1 x 1GbE RJ45 (IPMI) Add-on: Dual-Port 10 GbE, SFP+ or BASE-T (RJ45)
Power	2 x 400 W Redundant
Dimensions	Height: 43 mm, Width: 437 mm Depth: 503 mm
Weight	15.2 kg (33.5 lbs)
AC input	100-240 V, 50-60 Hz, 3 Amp
Cooling	1500 BTU/hour (maximum)
Temperature	5°C to 35°C (50°F to 95°F)
Humidity	8% to 90% (non-condensing)

^{1,2,3,4} You can find more information and explanations on the "Definitions" page of this document.

2. Secondary disaster recovery unit

Model	HYPERSeries 2100
	Free Free Syneto Free Free Free
Compute options	Single Intel Xeon - Broadwell CPU: 1. E5-2620V4 [8 cores @ 2.1 GHz]
Workload ¹	1. E5-2620V4: 4 large or 7 medium or 15 small VMs
Capacity options	Hybrid 8 TB effective ² (4 TB net)
Capacity expansion	Not available (expansion options only available on HYPER 3000)
Memory ³	48GB (usable by VMs)
DRAM data cache⁴	12GB (high speed data read)
Read cache	Not available (dedicate SSD read cache only available on HYPER 3000)
Write acceleration	2 x 20GB SSD (write-intensive)

Chassis	1U rack-mountable, 4 bays (hot-swap) + 2 OS disks
Network connectivity	4 x 1GbE and 1 x 1GbE RJ45 (IPMI) Add-on: Dual-Port 10 GbE, SFP+ or BASE-T (RJ45)
Power	2 x 400 W Redundant
Dimensions	Height: 43 mm, Width: 437 mm Depth: 503 mm
Weight	15.2 kg (33.5 lbs)
AC input	100-240 V, 50-60 Hz, 3 Amp
Cooling	1500 BTU/hour (maximum)
Temperature	5°C to 35°C (50°F to 95°F)
Humidity	8% to 90% (non-condensing)

^{1.2.3.4} You can find more information and explanations on the "Definitions" page of this document.

¹ Workload calculations in the table above are created according to the industry standard (e.g VMware, Openstack) virtual machine sizing options and best practices. They reflect a global average utilisation for VM compute, storage and memory.

Small Virtual Machines

- CPU: 466 MHz - No. of vCPUs: 1 - RAM: 2GB

- Capacity: 50GB

Medium Virtual Machines

- CPU: 933 MHz - No. of vCPUs: 2 - RAM: 4GB

- Capacity: 105GB

Large Virtual Machines

- CPU: 1866 MHz - No. of vCPUs: 4 - RAM: 8GB

- Capacity: 150GB

Effective capacity may vary according to the type of data/workload, from low space savings on incompressible workloads/data (e.g. images, videos) to high savings on compressible workloads (e.g. text files, VDI workloads, etc).

² Effective capacity across both primary and DR units is calculated by including space saving mechanisms like compression and incremental snapshots. The effective capacities are calculated using an efficiency rate of 2x (average for 95% of deployments).

³ Memory usable represents the estimated RAM available to virtual applications.

⁴ DRAM data cache represents the overall DRAM memory available to cache frequently and most recently used data to provide fast access. This can be compared the traditional the 4/8GB cache.